Fitting the Wheelchair Like a Prosthetic: How to Do it and Why it Matters (2 hrs./ 0.2 CEUs)

The Consortium of Spinal Cord Medicine published a set of clinical guidelines in 2005 entitled, “Preservation of Upper Limb Function Following Spinal Cord Injury: A Clinical Practice Guideline for Healthcare Professionals.” This course will address recommendations in the guidelines that directly relate to the importance of properly fitting the wheelchair to the person – a customized fit to the unique measurements and needs of the individual. How an individual sits and fits in the wheelchair is a key predictor of safety, comfort and independence, and, over the long term, will impact the likelihood of secondary injuries. Thus, a wheelchair must be appropriately fitted to the person similar to fitting a prosthetic limb for an individual. The course will review fitting techniques across all dimensions (length, width, and height, wheelbase, functional footprint) and will include specific examples of setting front and rear seat height, frame depth, and seat width. Computer generated models will be used to provide concrete demonstrations of poor vs. proper fitting.

Learning Objectives:

1. Describe a situation where an individual would require a custom frame depth and lead a discussion on how to prescribe the correct frame depth.
2. List 3 factors that guide the prescription of front and rear seat height for the individual manual wheelchair user.
3. Summarize and lead a discussion on the impact of proper seat width on the biomechanics of manual wheelchair propulsion.
4. Identify 2 consequences of improper frame geometries (impacting the overall wheelchair footprint) in relationship to stability and balance of the manual wheelchair.

<table>
<thead>
<tr>
<th>Learning Objectives</th>
<th>Speaker/Presenter</th>
<th>Learning Activities</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe a situation where an individual would require a custom frame depth and lead a discussion on how to prescribe the correct frame depth.</td>
<td>Morgan, Love, Walls, Edmondson, Novak, Bourque, Petrocci, Johnson, Emery</td>
<td>Powerpoint, Lecture</td>
<td>10</td>
</tr>
<tr>
<td>List 3 factors that guide the prescription of front and rear seat height for the individual manual wheelchair user.</td>
<td>Morgan, Love, Walls, Edmondson, Novak, Bourque, Petrocci, Johnson, Emery</td>
<td>Powerpoint, lecture, case studies</td>
<td>40</td>
</tr>
<tr>
<td>Summarize and lead a discussion on the impact of proper seat width on the biomechanics of manual wheelchair propulsion.</td>
<td>Morgan, Love, Walls, Edmondson, Novak, Bourque, Petrocci, Johnson, Emery</td>
<td>Lecture, case studies</td>
<td>40</td>
</tr>
<tr>
<td>Identify 2 consequences of improper frame geometries (impacting the overall wheelchair footprint) in relationship to stability and balance of the manual wheelchair.</td>
<td>Morgan, Love, Walls, Edmondson, Novak, Bourque, Petrocci, Johnson, Emery</td>
<td>Lecture, case studies</td>
<td>30</td>
</tr>
</tbody>
</table>

References:


